We recently participated in the FIMA Boston conference, one of the many springtime financial services industry events showcasing data, analytics and AI innovations on the digital transformation odyssey. And the single loudest takeaway from these events regarding this journey we’ve all been on now for nearly a decade is that it’s a journey with no end.
No longer viewed as a destination, transforming enterprise analytics is a virtuous cycle of data decisioning and predictions, governance and security that drive greater transparency and fluidity in our pursuit of analytics excellence in the cloud. Yet despite the jellyfish-like squishiness and uncertain risk for pain, there’s more optimism and a sense of clarity found in a more well-worn path for modernizing data analytics assets.
A look back at our work so far with customers in insurance and financial services highlights captivating insights learned in their legacy SAS asset transformations. In one assessment alone we discovered that only 30% of analysts were actively developing on the platform, a percentage of those were exporting the data rather than leverage it directly in the warehouse, and nearly 20% created major security risks placing open text passwords in their code.
Which highlights the importance in our second big takeaway from discussions with the C-suite and down the command line: it’s beyond time to get hands-on and transform workloads that are more and more at odds with the permeating enterprise data strategy in the cloud. Now that the broad infrastructure and processes are in place, all eyes and budgets must focus on decades-old methods and platforms like your legacy SAS workloads that today mostly encumber the people and processes tied to their analytics advantage.
Finding the edges of the jellyfish without getting stung
Corios was hired by a prominent insurance carrier to modernize their analytics and data practices for all things analytical: underwriting, pricing, claims, repairs, coverage, compliance, and regulatory support. They wanted to reduce the cost of data storage, to align all their analysts on a consolidated set of tools and environments, and to modernize the enterprise so they could react to climate events and other large-scale adverse events faster and more efficiently.
Read More